The interest accrued on a sum of ₹12,000 in two years, when interest is compounded annually, is ₹3,870. What is the rate of interest per annum?
$$interest\ =\ principal\ amount\left[\left(1+\frac{rate}{100}\right)^{time}\ -1\right]$$
$$3870 = 12000[(1+\frac{rate}{100})^{2} -1]$$
$$3870=12000(1+\frac{rate}{100})^2-12000$$
$$3870+12000=12000(1+\frac{rate}{100})^2$$
$$15870=12000(1+\frac{rate}{100})^2$$
$$\frac{529}{400}=(1+\frac{rate}{100})^2$$
$$\left(\frac{23}{20}\right)^2=(1+\frac{rate}{100})^2$$
$$\frac{23}{20}=1+\frac{rate}{100}$$
$$\frac{23}{20}-1=\frac{rate}{100}$$
$$\frac{3}{20}=\frac{rate}{100}$$
$$\frac{3}{1}=\frac{rate}{5}$$
So the rate of interest per annum = 15%
Create a FREE account and get: