In a $$\triangle$$ABC, the sides AB and AC are extended to P and Q, respectively. The bisectors of $$\angle$$PBC and $$\angle$$QCB intersect at a point R If $$\angle$$R = $$66^\circ$$, then the measure of $$\angle$$A is:
As per the given question,
Let $$\angle PBR=\angle RBC=x$$ and $$\angle QCR=\angle RCB=y$$
But $$\angle PBR +\angle RBC +\angle ABC=180^\circ$$
$$\angle ABC=180^\circ-2x$$--------(i) (sum of angle on the straight line)
And  $$\angle ACB=180^\circ-2y$$--------(ii) (sum of angle on the straight line)
Now in $$\triangle RBC$$
$$\angle RBC+\angle BCR +\angle CRB=180^\circ$$
$$x+y +66=180^\circ$$
$$x+y =180^\circ-66^\circ=114^\circ ---------------(iii)$$
Now in $$\triangle ABC$$
$$\angle A+\angle ACB +\angle ACB=180^\circ$$
$$\angle A=180^\circ-(180^\circ-2x)-(180^\circ-2y)$$
$$\angle A=+2x-180^\circ+2y$$
$$\angle A=+2x-180^\circ+2y$$
$$\angle A=2(x+y)-180^\circ ------------(iv)$$
Now from the equation (iii) and (iv)
$$\angle A=2(114)-180^\circ$$
$$\angle A=228^\circ-180^\circ=48^\circ$$
Create a FREE account and get: