Given, $$x=2+\sqrt{3}$$
$$=$$> Â $$\ \frac{1}{x}=\ \frac{1}{2+\sqrt{3}}$$
$$=$$> Â $$\ \frac{1}{x}=\ \frac{1}{2+\sqrt{3}}\times\ \frac{2-\sqrt{3}}{2-\sqrt{3}}$$
$$=$$> Â $$\ \frac{1}{x}=\ \frac{2-\sqrt{3}}{4-3}$$
$$=$$> Â $$\ \frac{1}{x}=\ 2-\sqrt{3}$$
$$\therefore\ x+\frac{1}{x}=(2+\sqrt{3})+(2-\sqrt{3})=4$$
$$=$$> Â $$\left(\ x+\frac{1}{x}\right)^3=4^3$$
$$=$$> Â $$x^3+\frac{\ 1}{x^3}+3.x.\frac{1}{x}\left(\ x+\frac{1}{x}\right)=64$$
$$=$$> Â $$x^3+\frac{\ 1}{x^3}+3\left(4\right)=64$$
$$=$$> Â $$x^3+x^{-3}=52$$
Hence, the correct answer is Option D
Create a FREE account and get: