Sign in
Please select an account to continue using cracku.in
↓ →
If $$x = 2 + \sqrt3$$ then the value of $$x^3 + x^{-3}$$ is:
Given, $$x=2+\sqrt{3}$$
$$=$$> $$\ \frac{1}{x}=\ \frac{1}{2+\sqrt{3}}$$
$$=$$> $$\ \frac{1}{x}=\ \frac{1}{2+\sqrt{3}}\times\ \frac{2-\sqrt{3}}{2-\sqrt{3}}$$
$$=$$> $$\ \frac{1}{x}=\ \frac{2-\sqrt{3}}{4-3}$$
$$=$$> $$\ \frac{1}{x}=\ 2-\sqrt{3}$$
$$\therefore\ x+\frac{1}{x}=(2+\sqrt{3})+(2-\sqrt{3})=4$$
$$=$$> $$\left(\ x+\frac{1}{x}\right)^3=4^3$$
$$=$$> $$x^3+\frac{\ 1}{x^3}+3.x.\frac{1}{x}\left(\ x+\frac{1}{x}\right)=64$$
$$=$$> $$x^3+\frac{\ 1}{x^3}+3\left(4\right)=64$$
$$=$$> $$x^3+x^{-3}=52$$
Hence, the correct answer is Option D
Create a FREE account and get: