If $$\frac{\sin A + \cos A}{\cos A} = \frac{17}{12}$$, then the value of $$\frac{1 - \cos A}{\sin A}$$ is:
$$\frac{\sin A + \cos A}{\cos A} = \frac{17}{12}$$
$$\frac{\cos A(\frac{\sin A}{\cos A} + 1)}{\cos A} = \frac{17}{12}$$
tan A + 1 = $$\frac{17}{12}$$
tan A = $$\frac{17}{12}$$ - 1 = $$\frac{5}{12}$$
By triplet 5-12-13,
Perpendicular = 5
base = 12
hypotenuse = 13
so,
Sin A = perpendicular/hypotenuse = 5/13
cos A = base/hypotenuse = 12/13
Now,
$$\frac{1 - \cos A}{\sin A}$$
= $$\frac{1 - \frac{12}{13}}{\frac{5}{13}}$$ = 1/5
Create a FREE account and get: