Points M and N are on the sides PQ and QR respectively of a triangle PQR. right angled at Q. If PN = 9 cm, MR = 7 cm, and MN = 3 cm, then find the length of PR (in cm).
From right angled triangle QMN,
b$$^2$$ + c$$^2$$ = 3$$^2$$Â
b$$^2$$ + c$$^2$$ = 9..........(1)
From right angled triangle PQN,
(a+b)$$^2$$ + c$$^2$$ = 9$$^2$$
a$$^2$$ +Â b$$^2$$ + 2ab + c$$^2$$ = 81
a$$^2$$ + 2ab + 9 = 81Â [From (1)]
a$$^2$$ + 2ab = 72..........(2)
From right angled triangle MQR,
b$$^2$$ +Â (c+d)$$^2$$ = 7$$^2$$
b$$^2$$ + c$$^2$$ +Â d$$^2$$Â + 2cd = 49
9 + d$$^2$$ + 2cd = 49 [From (1)]
d$$^2$$ + 2cd = 40..........(3)
From right angled triangle PQR,
(a+b)$$^2$$ +Â (c+d)$$^2$$ = PR$$^2$$
a$$^2$$ + 2ab + b$$^2$$ +Â c$$^2$$ + d$$^2$$ + 2cd =Â PR$$^2$$
72 + 9 + 40 =Â PR$$^2$$
PR$$^2$$ = 121
PR = 11 cm
Hence, the correct answer is Option A
Create a FREE account and get: