$$x^2 - 3x + 1 = 0$$
Divide both sides by x,
$$x - 3 + \frac{1}{x}Â = 0$$
$$x + \frac{1}{x} =Â 3$$
On taking both sides cube,
$$(x + \frac{1}{x})^3 = 3^3$$
$$x^3 +Â \frac{1}{x^3} + 3(x + \frac{1}{x}) = 27$$
$$(\because (a + b)^3 = a^3 + b^3 + 3ab(a + b))$$
$$x^3 + \frac{1}{x^3} + 3(3) = 27$$
$$x^3 + \frac{1}{x^3} = 18$$
on taking square both sides,
$$(x^3 + \frac{1}{x^3})^2 = 18^2$$
$$x^6 +Â \frac{1}{x^6} + 2 = 324$$
$$(\because (a + b)^2 = a^2 + b^2 + 2ab)$$
$$x^6 + \frac{1}{x^6} = 322$$
Create a FREE account and get: