If $$5 \cos^{2} \theta + 1 = 3 \sin^{2} \theta, 0^\circ < \theta < 90^\circ$$, then what is the value of $$\frac{\tan \theta + \sec \theta}{\cot \theta + \cosec \theta}$$
$$5 \cos^{2} \theta + 1 = 3 \sin^{2} \theta$$
$$5 \cos^{2} \theta + \sin^{2} \theta +Â \cos^{2} \theta = 3 \sin^{2} \theta$$
$$6 \cos^{2} \theta = 2 \sin^{2} \theta$$
$$\tan^{2} \theta = 3$$
$$\tan \theta = \sqrt3$$Â
$$\theta = 60\degree$$
$$\frac{\tan \theta + \sec \theta}{\cot \theta + \cosec \theta}$$
=Â $$\frac{\tan 60\degree + \sec 60\degree}{\cot 60\degree + \cosec 60\degree}$$
=Â $$\frac{\sqrt{3} + 2}{\frac{1}{\sqrt3} + \frac{2}{\sqrt3}}$$
= $$\frac{\sqrt{3} + 2}{\sqrt3}$$
= $$\frac{3 + 2\sqrt{3}}{3}$$
Create a FREE account and get: