ABC is a right angled triangle, right angled at A. A circle is inscribed in it. The lengths of two sides containing the right angle are 48 cm and 14 cm. The radius of the inscribed circle is:
Using the pythagoras theorem,
BC$$^2$$ = AB$$^2$$ + AC$$^2$$
$$\Rightarrow$$ Â BC$$^2$$ = 48$$^2$$ + 14$$^2$$
$$\Rightarrow$$ Â BC$$^2$$ = 2304 + 196
$$\Rightarrow$$ Â BC$$^2$$ = 2500
$$\Rightarrow$$Â BC = 50 cm
Let the radius of the circle = r
$$\Rightarrow$$Â OD = OI = OJ = r
AB, BC, AC are tangents to the circle
Area of $$\triangle$$ABC = Area of $$\triangle$$OAC + Area of $$\triangle$$OBC + Area of $$\triangle$$OAB
$$\Rightarrow$$ Â $$\frac{1}{2}$$ x 48 x 14 =Â $$\frac{1}{2}$$ x AC x OD +Â $$\frac{1}{2}$$ x BC x OI +Â $$\frac{1}{2}$$ x AB x OJ
$$\Rightarrow$$ Â 336 =Â $$\frac{1}{2}$$ x 14 x r +Â $$\frac{1}{2}$$ x 50 x r +Â $$\frac{1}{2}$$ x 48 x r
$$\Rightarrow$$Â 336 = 7r + 25r + 24r
$$\Rightarrow$$Â 56r = 336
$$\Rightarrow$$Â r = 6 cm
$$\therefore\ $$Radius of the inscribed circle = 6 cm
Hence, the correct answer is Option C
Create a FREE account and get: