The elevation of the top of a tower from a point on the ground is $$\ 45^\circ$$. On travelling 60 m from the point towards the tower, the alevation of the top becomes $$\ 60^\circ$$. The height of the tower, in metres, is
From $$\triangle$$ ACD,
tan $$60^\circ = \frac{AD}{CD}$$
$$\Rightarrow AD = CD\sqrt{3}$$
From $$\triangle$$ ABD,
tan $$45^\circ = \frac{AD}{BD}$$
$$\Rightarrow$$ AD = BD
$$\Rightarrow$$ AD = BC+CD
$$\Rightarrow$$ $$AD = 60+\frac{AD}{\sqrt{3}}$$
$$\Rightarrow$$ $$AD-\frac{AD}{\sqrt{3}} = 60$$
$$\Rightarrow \frac{\sqrt{3}AD-AD}{\sqrt{3}} = 60$$
$$AD(\sqrt{3}-1) = 60\sqrt{3}$$
$$AD = \frac{60\sqrt{3}}{\sqrt{3}-1}$$
Rationalising above equation
$$AD = \frac{60\sqrt{3}}{\sqrt{3}-1}\times\frac{\sqrt{3}+1}{\sqrt{3}+1}$$
$$AD = \frac{60\sqrt{3}(\sqrt{3}+1)}{\sqrt{3}}$$
$$\therefore AD = 30(\sqrt{3}+3)$$
Create a FREE account and get: