Question 71

If x + y = 15 and xy = 14, then the value of x — y is:

Solution

Given, $$x+y\ =15$$  and $$xy=14$$

$$=$$> $$\left(x+y\right)^2=15^2$$

$$=$$> $$x^2+y^2+2xy=225$$

$$=$$> $$x^2+y^2+2xy-2xy+2xy=225$$

$$=$$> $$x^2+y^2-2xy+4xy=225$$

$$=$$> $$\left(x-y\right)^2+4\left(14\right)=225$$

$$=$$> $$\left(x-y\right)^2+=225-56$$

$$=$$> $$\left(x-y\right)^2+=169$$

$$=$$>  $$x-y=13$$

Hence, the correct answer is Option A


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App