If $$ \triangle$$ABC, $$\angle$$ABC=90$$^\circ$$ and BD$$\bot$$AC , if AD = 4cm and CD = 5cm then BD is equal to
Let $$\angle\ $$C = x
In $$ \triangle$$ABC,
$$\cos x$$ =Â $$\frac{BC}{9}$$
$$=$$>Â BC = 9 $$\cos x$$
In $$ \triangle$$BCD,
$$\cos x$$ = $$\frac{5}{BC}$$
$$=$$> Â $$\cos x=\frac{5}{9\cos x}$$
$$=$$>Â $$\cos^2x=\frac{5}{9}$$
$$=$$> Â $$\cos x=\frac{\sqrt{5}}{3}$$
$$=$$> Â $$\sin x=\sqrt{1-\cos^2x}=\sqrt{1-\frac{5}{9}}=\sqrt{\frac{4}{9}}=\frac{2}{3}$$
In $$ \triangle$$BCD,
$$\sin x=\frac{BD}{BC}$$
$$=$$> Â $$\frac{2}{3}=\frac{BD}{9\cos x}$$
$$=$$> Â $$\frac{2}{3}=\frac{BD}{9\left(\frac{\sqrt{5}}{3}\right)}$$
$$=$$> Â $$\frac{2}{3}=\frac{3BD}{9\left(\sqrt{5}\right)}$$
$$=$$> Â BD = 2$$\sqrt{5}$$
Hence, the correct answer is Option B
Create a FREE account and get: