Question 71

If A lies in the first quadrant and $$6 \tan A = 5$$, then the value of $$\frac{8 \sin A - 4 \cos A}{\cos A + 2 \sin A}$$ is:

Solution

$$6 \tan A = 5$$

$$\tan A = \frac{5}{6}$$

$$\frac{8 \sin A - 4 \cos A}{\cos A + 2 \sin A}$$

= $$\frac{cos A(8 \tan A - 4)}{\cos A(1 + 2 \tan A)}$$

= $$\frac{8 \tan A - 4}{1 + 2 \tan A}$$

Put the value of $$\tan \theta$$,

= $$\frac{8 \times \frac{5}{6} - 4}{1 + 2 \times \frac{5}{6}}$$

= $$\frac{\frac{20}{3} - 4}{1 + \frac{5}{3}}$$

= $$\frac{\frac{8}{3}}{\frac{8}{3}}$$ = 1


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App