If 2x + 2(4 + 3x) < 2 + 3x > 2x + x/2; then x can take which of the following values?
Expression 1 : $$2 + 3x$$ > $$2x + \frac{x}{2}$$
=> $$4 + 6x$$ > $$5x$$
=> $$6x - 5x$$Â > $$-4$$
=> $$x$$Â > $$-4$$ ----------(i)
Expression 2Â :Â $$2x + 2(4 + 3x) < 2 + 3x$$
=> $$8x + 8$$ < $$2 + 3x$$
=> $$8x - 3x$$ < $$2 - 8$$
=> $$x$$ < $$\frac{-6}{5}$$ ------(ii)
Combining inequalities (i) and (ii), we get : $$-4$$ < $$x$$ < $$\frac{-6}{5}$$
Thus, only value that $$x$$ can take among the options = -3
=> Ans - (A)
Create a FREE account and get: