ABCDE is a regular pentagon. Its sides are extended as shown in the figure. The value of $$\frac{\angle ABC + 2\angle EGD + 3\angle BAJ}{6}$$ is:
Given,
ABCDE is a regular pentagon
Each angle of regualr pentagon =Â $$\frac{\left(n-2\right)180^{\circ\ }}{n}=\frac{\left(5-3\right)180^{\circ\ }}{5}=108^{\circ\ }$$
$$=$$> Â $$\angle\ $$ABC =Â $$\angle\ $$BCD = $$\angle\ $$CDE =Â $$\angle\ $$DEA =Â $$\angle\ $$EAB =Â 108$$^{\circ\ }$$
From the figure,
$$\angle\ $$BAJ + $$\angle\ $$EAB = 180$$^{\circ\ }$$
$$=$$> Â $$\angle\ $$BAJ + 108$$^{\circ\ }$$ = 180$$^{\circ\ }$$
$$=$$> Â $$\angle\ $$BAJ =Â 72$$^{\circ\ }$$
$$\angle\ $$DEA +Â $$\angle\ $$GED =Â 180$$^{\circ\ }$$
$$=$$> Â 108$$^{\circ\ }$$ +Â $$\angle\ $$GED =Â 180$$^{\circ\ }$$
$$=$$> Â $$\angle\ $$GED =Â 72$$^{\circ\ }$$
$$\angle\ $$CDE +Â $$\angle\ $$GDE =Â 180$$^{\circ\ }$$
$$=$$> Â 108$$^{\circ\ }$$ +Â $$\angle\ $$GDE =Â 180$$^{\circ\ }$$
$$=$$> Â $$\angle\ $$GDE =Â 72$$^{\circ\ }$$
In $$\triangle\ $$GED,
$$\angle\ $$GDE +Â $$\angle\ $$GED +Â $$\angle\ $$EGD =Â 180$$^{\circ\ }$$
$$=$$> Â 72$$^{\circ\ }$$ +Â 72$$^{\circ\ }$$ +Â $$\angle\ $$EGD =Â 180$$^{\circ\ }$$
$$=$$> Â $$\angle\ $$EGD =Â 36$$^{\circ\ }$$
$$\therefore\ $$Â $$\frac{\angle ABC+2\angle EGD+3\angle BAJ}{6}=\frac{108^{\circ\ }+2\left(36^{\circ\ }\right)+3\left(72^{\circ\ }\right)}{6}=\frac{108^{\circ\ }+72^{\circ\ }+216^{\circ\ }}{6}=\frac{396^{\circ\ }}{6}=66^{\circ\ }$$
Hence, the correct answer is Option C
Create a FREE account and get: