In the given figure, AP is perpendicular to BC, and AQ is the bisector of angle PAC. What will be the measure of angle PAQ ?
From the given figure,
AP is perpendicular to BC
$$=$$>Â $$\angle\ $$APC =Â $$90^{\circ}$$
In $$\triangle\ $$PAC,
$$\angle\ $$PAC + $$\angle\ $$APC + $$\angle\ $$PCA = $$180^{\circ\ }\ $$
$$=$$> $$\angle\ $$PAC +Â $$90^{\circ}$$ + $$30^{\circ}$$ = $$180^{\circ\ }$$
$$=$$> $$\angle\ $$PAC = $$180^{\circ}-120^{\circ}$$
$$=$$> $$\angle\ $$PAC = $$60^{\circ}$$
AQ is the bisector of angle PAC
$$=$$>Â $$\angle\ $$PAQ =Â $$\frac{60^{\circ\ }}{2}$$
$$=$$> $$\angle\ $$PAQ =Â $$30^{\circ\ }$$
Hence, the correct answer is Option D
Create a FREE account and get: