In the given figure, AD is bisector of angle $$\angle$$CAB and BD is bisector of angle $$\angle$$CBF. If the angle at C is 34$$^\circ$$, the angle $$\angle$$ADB is:
Given,
$$\angle$$C = 34$$^\circ$$
AD is bisector of angle $$\angle$$CAB
$$=$$> $$\angle$$ACE = $$\angle$$BAE
Let $$\angle$$ACE = $$\angle$$BAE = x
BD is bisector of angle $$\angle$$CBF
$$=$$>Â $$\angle$$CBD = $$\angle$$FBD
Let $$\angle$$CBD = $$\angle$$FBD = y
In $$\triangle\ $$ABC, $$\angle$$CBF is the exterior angle at B
$$=$$>Â 2y =Â 34$$^\circ$$ + 2x
$$=$$>Â y =Â 17$$^\circ$$ + x
In $$\triangle\ $$ABC,
$$\angle$$ABC + $$\angle$$BAC + $$\angle$$ACB =Â 180$$^\circ$$
$$=$$>Â $$\angle$$ABC + 2x +Â 34$$^\circ$$ = 180$$^\circ$$
$$=$$> Â $$\angle$$ABC =Â 146$$^\circ$$- 2x
In $$\triangle\ $$ABD,
$$=$$> Â $$\angle$$ABD + $$\angle$$BAD + $$\angle$$ADB = 180$$^\circ$$
$$=$$> Â 146$$^\circ$$- 2x + y + x +Â $$\angle$$ADB =Â 180$$^\circ$$
$$=$$> Â 146$$^\circ$$- x +Â 17$$^\circ$$ + x + $$\angle$$ADB = 180$$^\circ$$
$$=$$> Â 163$$^\circ$$ + $$\angle$$ADB =Â 180$$^\circ$$
$$=$$> Â $$\angle$$ADB =Â 17$$^\circ$$
Hence, the correct answer is Option B
Create a FREE account and get: