Using double angle formula, we know that $$cos(2\theta) = cos^2\theta - sin^2\theta$$
=> $$cos(2\theta) = (1 - sin^2\theta) - sin^2\theta$$
=> $$cos(2\theta) = 1 - 2sin^2\theta$$
Replacing $$\theta$$ by $$\frac{A}{2}$$, we get :
=> $$cos A = 1 - 2sin^2(\frac{A}{2})$$
=> $$2sin^2(\frac{A}{2}) = 1 - cosA$$
=> $$sin^2(\frac{A}{2}) = \frac{(1-cosA)}{2}$$
=> $$sin(\frac{A}{2}) = \sqrt{\frac{(1 - cos A)}{2}}$$
=> Ans - (B)
Create a FREE account and get: