What is the area (in m$$^2$$) of a triangular field whose sides measure 25 m, 39 m and 56 m?
We can obtain the area of the given triangle by Heron's formula.
semi perimeter = S =Â $$\frac{a+b+c}{2}$$
Where a = 25, b = 39, c = 56
So S =Â $$\frac{25+39+56}{2}$$
=Â $$\frac{120}{2}$$
= 60
area of a triangular field =Â $$\sqrt{S\left(S-a\right)\left(S-b\right)\left(S-c\right)\ }$$
=Â $$\sqrt{60\left(60-25\right)\left(60-39\right)\left(60-56\right)\ }$$
=Â $$\sqrt{60\times\ 35\times\ 21\times\ 4\ }$$
=Â $$\sqrt{176400}$$
= 420Â m$$^2$$
Create a FREE account and get: