In $$\triangle$$ABC, D is a point on BC. If $$\frac{AB}{AC} = \frac{BD}{DC}$$, $$\angle$$B = $$75^\circ$$ and $$\angle$$C = $$45^\circ$$ then $$\angle$$BAD is equal to:
Given, $$\angle$$B = $$75^\circ$$ and  $$\angle$$C = $$45^\circ$$
In $$\triangle$$ABC,
$$\angle$$A + $$\angle$$B + $$\angle$$C = $$180^\circ$$
$$\Rightarrow$$ Â $$\angle$$A + $$75^\circ$$ + $$45^\circ$$ = $$180^\circ$$
$$\Rightarrow$$ Â $$\angle$$A +Â $$120^\circ$$ =Â $$180^\circ$$
$$\Rightarrow$$ Â $$\angle$$A =Â $$60^\circ$$
Given, $$\frac{AB}{AC} = \frac{BD}{DC}$$
AD divides the side BC in the ratio of other two sides so AD is the angular bisector $$\angle$$A.
$$\Rightarrow$$ Â $$\angle$$BAD =Â $$\frac{1}{2}\angle$$A
$$\Rightarrow$$ Â $$\angle$$BAD = $$\frac{60^{\circ}}{2}$$
$$\Rightarrow$$ Â $$\angle$$BAD =Â $$30^\circ$$
Hence, the correct answer is Option C
Create a FREE account and get: