In the given figure, chords AD and BC in the circle, are extended to E and F, respectively.
If $$\angle$$CDE = 85$$^\circ$$, $$\angle$$DCF = 94$$^\circ$$, then the value of $$\angle$$ABF + $$\angle$$EAB is:
From the figure,
$$\angle$$CDE +Â $$\angle$$CDA =Â 180$$^\circ$$
$$=$$> Â 85$$^\circ$$ +Â $$\angle$$CDA = 180$$^\circ$$
$$=$$> Â $$\angle$$CDA =Â 95$$^\circ$$
$$\angle$$DCF + $$\angle$$DCB = 180$$^\circ$$
$$=$$> 94$$^\circ$$ + $$\angle$$DCB = 180$$^\circ$$
$$=$$> $$\angle$$DCB = 86$$^\circ$$
In the quadrilateral ABCD,
$$\angle$$ABF + $$\angle$$DCB + $$\angle$$CDA + $$\angle$$EAB = 360$$^\circ$$
$$=$$>Â $$\angle$$ABF +Â 86$$^\circ$$ + 95$$^\circ$$ + $$\angle$$EAB =Â 360$$^\circ$$
$$=$$> Â $$\angle$$ABF +Â $$\angle$$EAB +Â 181$$^\circ$$ =Â 360$$^\circ$$
$$=$$> Â $$\angle$$ABF + $$\angle$$EAB =Â 179$$^\circ$$
Hence, the correct answer is Option B
Create a FREE account and get: