If$$\ x^{2}$$- 3x + 1 = 0, then the value of $$\ x^{5}+\frac{1}{x^{5}}\ $$is equal to
$$x^{2}-3x+1$$=0
Taking 'x' common
x(x-3+$$\frac{1}{x})$$=0
$$\Rightarrow x+\frac{1}{x}$$=$$3\rightarrow(1)$$
Squaring on both sides
$$x^{2}+\frac{1}{x^{2}}+2\times x\times\frac{1}{x}$$=9
$$\Rightarrow x^{2}+\frac{1}{x^{2}}$$=$$7\rightarrow(2)$$
Cubing equation(1) on both sides
$$x^{3}+\frac{1}{x^{3}}+3\times x\times\frac{1}{x}(x+\frac{1}{x})$$=27
$$x^{3}+\frac{1}{x^{3}}$$+$$3\times 1\times3$$=27($$\because x+\frac{1}{x}$$=3)
$$x^{3}+\frac{1}{x^{3}}$$=27-9=$$18\rightarrow(3)$$
Squaring equation(2) on both sides
$$x^{4}+\frac{1}{x^{4}}+2\times x^{2}\times\frac{1}{x^{2}}$$=49
$$x^{4}+\frac{1}{x^{4}}$$=$$47\rightarrow(4)$$
Multiplying equation(1) and equation(4)
$$(x^{4}+\frac{1}{x^{4}})(x+\frac{1}{x}$$)=$$47\times3$$
$$x^{5}+\frac{1}{x^{5}}+x^{3}+\frac{1}{x^{3}}$$=$$47\times3$$=141
$$x^{5}+\frac{1}{x^{5}}+18$$=141($$\because x^{3}+\frac{1}{x^{3}}$$)
$$\therefore x^{5}+\frac{1}{x^{5}}$$=123
Create a FREE account and get: