Given,
$$x + \frac{1}{x} = 10$$
We have to find,
$$x^3 + \frac{1}{x^3}$$
First we have to know what is $$a^3 + b^3$$ i.e $$(a+b)(a^2 -ab + b^2)$$
Putting the same for x an 1/x, we get
$$\left({x + \frac{1}{x}}\right)\left(x^2 -1 + \frac{1}{x}^2\right)$$...(i)
and Again we have to find $$(x^2 +Â \frac{1}{x}^2)$$ , From the formula of $$a^2 +b^2$$ = $$(a + b)^2 -2ab$$,
we got $$(x^2 + \frac{1}{x}^2$$) = $$(x + \frac{1}{x})^2 -2)$$ = 98.
Hence we have now ,
10*(98-1=97)=970
Create a FREE account and get: