Question 69

If $$\sec \theta = 8x  and  \tan \theta = \frac{8}{x}$$(x  0), then the value of $$16(x^2 - \frac{1}{x^2})$$ is:

Solution

As We know the trigonometry identity :

$$\sec ^2\theta - \tan^2\theta = 1$$

By putting value of $$\sec\theta$$ and $$\tan\theta$$, we get 

$$\Rightarrow(8x)^2 - (\frac{8}{x})^2 = 1$$

$$\Rightarrow 64x^2 - \frac{64}{x^2} = 1$$

$$\Rightarrow 64(x^2 -\frac{1}{x^2}) = 1$$

$$\therefore 16(x^2 -\frac{1}{x^2}) = \frac{1}{4}$$

 


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App