If $$\frac{cos\theta}{1-sin\theta}+\frac{cos\theta}{1+sin\theta}=4$$ then the value of $$\theta(0<\theta<90^{\circ})$$Â is
Given : $$\frac{cos\theta}{1-sin\theta}+\frac{cos\theta}{1+sin\theta}=4$$
=> $$\frac{cos\theta(1+sin\theta)+cos\theta(1-sin\theta)}{(1-sin\theta)(1+sin\theta)}=4$$
=> $$(cos\theta+cos\theta sin\theta)+(cos\theta-cos\theta sin\theta)=4(1-sin^2\theta)$$
=> $$2cos\theta=4cos^2\theta$$
=> $$2cos\theta=1$$
=> $$cos\theta=\frac{1}{2}$$
=> $$\theta=cos^{-1}(\frac{1}{2})$$
=> $$\theta=60^\circ$$
=> Ans - (A)
Create a FREE account and get: