Question 69

If $$\cos^2 \theta - \sin^2 \theta - 3 \cos \theta + 2 =0, 0^\circ < \theta < 90^\circ$$, then what is the value of $$4 \cosec \theta + \cot \theta$$ ?

Solution

We know that :
$$\sin^2\theta\ =1-\cos^2\theta\ \ $$

We can write : 

$$\cos^2\theta\ +\left(1-\sin^2\theta\ \right)-3\cos\theta\ +1$$
$$2\cos^2\theta\ -3\cos\theta\ +1\ =0\ $$
On solving ,we get

$$\cos\theta=\frac{1}{2}\ $$
or $$\theta=60$$
so $$4\operatorname{cosec}60+\cot60$$

$$4\times\ \frac{2}{\sqrt{\ 3}}+\frac{1}{\sqrt{\ 3}}$$

= $$\frac{9}{\sqrt{\ 3}}$$

=$$3\sqrt{\ 3}$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App