If $$\cos^2 \theta - \sin^2 \theta - 3 \cos \theta + 2 =0, 0^\circ < \theta < 90^\circ$$, then what is the value of $$4 \cosec \theta + \cot \theta$$ ?
We know that :
$$\sin^2\theta\ =1-\cos^2\theta\ \ $$
We can write :Â
$$\cos^2\theta\ +\left(1-\sin^2\theta\ \right)-3\cos\theta\ +1$$
$$2\cos^2\theta\ -3\cos\theta\ +1\ =0\ $$
On solving ,we get
$$\cos\theta=\frac{1}{2}\ $$
or $$\theta=60$$
so $$4\operatorname{cosec}60+\cot60$$
$$4\times\ \frac{2}{\sqrt{\ 3}}+\frac{1}{\sqrt{\ 3}}$$
=Â $$\frac{9}{\sqrt{\ 3}}$$
=$$3\sqrt{\ 3}$$
Create a FREE account and get: