If $$a + \frac{1}{a} = 3$$, then the value of $$\left(a^6 + \frac{1}{a^6}\right)$$ is equal to:
 $$a + \frac{1}{a} = 3$$,Â
Cubing both side,
$$ \left(a + \frac{1}{a}\right)^{3}=3^{3}$$
$$\left(a^{3} + \frac{1}{a^{3}}\right)+9=27$$
$$a^{3} + \frac{1}{a^{3}}=27-9=18$$
Again squaring both side,
$$\left(a^{3} + \frac{1}{a^{3}}\right)^{2}=18^{2}$$
$$\left(a^{6} + \frac{1}{a^{6}}\right)+2=324$$
$$\left(a^{6} + \frac{1}{a^{6}}\right)=324-2=322$$
Create a FREE account and get: