Question 69

If $$a + \frac{1}{a} = 3,  then   \left(a^4 + \frac{1}{a^4}\right)$$ is equal to:

Solution

Given

$$a + \frac{1}{a}$$ = 3

using the formula $$(a+b)^2$$ = $$a^2 + b^2+ 2 × a × b $$

$$(a + \frac{1}{a})^2$$ =  $$\left(a^2 + \frac{1}{a^2}\right)$$ + $$ 2 $$ × $$a × \frac{1}{a}$$

$$3^2$$ = $$\left(a^2 + \frac{1}{a^2}\right)$$ + 2

$$\left(a^2 + \frac{1}{a^2}\right)$$ = 9 - 2

$$\left(a^2 + \frac{1}{a^2}\right)$$ = 7

again use the same formula to the above solutions we can get final answer $$(a+b)^2$$ = $$a^2 + b^2+ 2 × a × b $$

 $$\left(a^2 + \frac{1}{a^2}\right)^2$$ = $$\left(a^4 + \frac{1}{a^4}\right)$$+ $$ 2 $$ × $$a^2 × \frac{1}{a^2}$$

$$7^2$$ =  $$\left(a^4 + \frac{1}{a^4}\right)$$ + 2

$$49-2$$ = $$\left(a^4 + \frac{1}{a^4}\right)$$

therefore $$\left(a^4 + \frac{1}{a^4}\right)$$ = $$47$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App