If a + b + c = 6 and ab + bc + ca = 4, then $$a^3 + b^3 + c^3 - 3 abc$$ is equal to:
$$\left(a+b+c\right)=6$$
Squaring both side,
$$\left(a+b+c\right)^2=6^2$$
$$a^2+b^2+c^2+2\left(ab+bc+ac\right)=36$$
$$a^2+b^2+c^2+2\left(4\right)=36$$
$$a^2+b^2+c^2=28$$
Now,
$$a^3 + b^3 + c^3 - 3 abc$$ =Â $$\left(a+b+c\right)\left(a^2+b^2+c^2-\left(ab+bc+ac\right)\right)$$
                   = $$6\left(28-4\right)=144$$ Â
Create a FREE account and get: