₹3600 becomes ₹4900 in 2 years when kept at compound interest (compounded annually). What is the rate of interest per annum?
$$A = P\left(1+\frac{R}{100}\right)^T$$
Where A = principal amount + interest
P = principal amount
R = rate of interest
T = time
$$4900=3600\left(1+\frac{R}{100}\right)^2$$
$$\frac{4900}{3600}=\left(1+\frac{R}{100}\right)^2$$
$$\frac{49}{36}=\left(1+\frac{R}{100}\right)^2$$
$$\left(\frac{7}{6}\right)^2=\left(1+\frac{R}{100}\right)^2$$
$$\frac{7}{6}=1+\frac{R}{100}$$
$$\frac{7}{6}-1=\frac{R}{100}$$
$$\frac{1}{6}=\frac{R}{100}$$
$$\frac{100}{6}=R$$
$$\frac{50}{3}=R$$
$$R\ =\ 16\frac{2}{3}$$%
Create a FREE account and get: