What are respectively the curved surface area and volume of a hemisphere of radius 21 cm? (Take $$\pi = \frac{22}{7}$$)
the curved surface area of a hemisphere = $$2\times\ \pi\ \times\ \left(radius\right)^2$$
=Â $$2\times\frac{22}{7}\times\left(21\right)^2$$
=Â $$\frac{44}{7}\times441$$
=Â $$44\times63$$
=Â 2772 $$cm^2$$
the volume of a hemisphere = $$\frac{2}{3}\times\ \pi\ \times\ \left(radius\right)^3$$
=Â $$\frac{2}{3}\times\frac{22}{7}\times\ \left(21\right)^3$$
= $$\frac{44}{21}\times\ \left(21\right)^3$$
=Â $$44\times\ \left(21\right)^2$$
= $$44\times441$$
=Â 19404Â $$cm^3$$
Create a FREE account and get: