If $$\cot \theta = \sqrt{6}$$, then the value of $$\frac{\cosec^2 \theta + \sec^2 \theta}{\cosec^2 \theta - \sec^2 \theta}$$ is:
givenÂ
$$\cot\theta = \sqrt{6}$$
now squaring both side we get
$$\cot^{2}\theta$$ =6
we also know $$\cot^{2}\theta = \frac{\cos^{2}\theta}{\sin^{2}\theta}$$
$$\cos^{2}\theta = 6\sin^{2}\theta$$
now adding both side 1 we get
$$\cot^{2}\theta$$ + 1 = 6+1 i.e 7
therefore $$\cosec^{2}\theta$$ = 7
nowÂ
$$\frac{\cosec^{2}\theta + \sec^{2}\theta}{\cosec^{2}\theta - \sec^{2}\theta}$$
$$\frac{\frac{1}{\sin^{2}\theta} + \frac{1}{cos^{2}\theta}{\frac{1}{\sin^{2}\theta} - \frac{1}{cos^{2}\theta}$$
$$\frac{\cos^{2}\theta + \sin^{2}\theta}{\cos^{2}\theta - \sin^{2}\theta}$$
$$\frac{1}{\cos^{2}\theta - \sin^{2}\theta}$$ now applying the value we get
$$\frac{1}{6\sin^{2}\theta - \sin^{2}\theta}$$
$$\frac{1}{5\sin^{2}\theta}$$
$$\frac{1}{5}\cosec^{2}\theta$$Â
therefore $$\frac{7}{5}$$ is the answer
Create a FREE account and get: