Question 68

If $$\cos^2 \theta + cos^4 \theta = 1$$, then the value of $$\sin \theta + \sin^2 \theta$$ is:

Solution

Given,

$$\cos^2 \theta + cos^4 \theta = 1$$

$$=$$>  $$\cos^2\theta+\cos^4\theta=\sin^2\theta\ +\cos^2\theta\ $$

$$=$$>  $$\cos^4\theta=\sin^2\theta\ $$

$$=$$>  $$\sin\theta\ =\cos^2\theta\ $$

$$\therefore\ $$ $$\sin\theta+\sin^2\theta=\cos^2\theta\ +\left(\cos^2\theta\right)^2=\cos^2\theta\ +\cos^4\theta=1$$

Hence, the correct answer is Option C


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App