If $$\cos^2 \theta + cos^4 \theta = 1$$, then the value of $$\sin \theta + \sin^2 \theta$$ is:
Given,
$$\cos^2 \theta + cos^4 \theta = 1$$
$$=$$> Â $$\cos^2\theta+\cos^4\theta=\sin^2\theta\ +\cos^2\theta\ $$
$$=$$> Â $$\cos^4\theta=\sin^2\theta\ $$
$$=$$> Â $$\sin\theta\ =\cos^2\theta\ $$
$$\therefore\ $$ $$\sin\theta+\sin^2\theta=\cos^2\theta\ +\left(\cos^2\theta\right)^2=\cos^2\theta\ +\cos^4\theta=1$$
Hence, the correct answer is Option C
Create a FREE account and get: