Given, $$a^3 + b^3 = 20$$ ...........(1)
$$a + b = 5$$
$$=$$> $$\left(a+b\right)^3=5^3$$
$$=$$> $$a^3+b^3+3ab\left(a+b\right)=125$$
$$=$$> $$20+3ab\left(5\right)=125$$
$$=$$> $$15ab=105$$
$$=$$> $$ab=\frac{105}{15}$$
$$=$$> $$ab=7$$ ..........................(2)
$$a + b = 5$$
$$=$$> $$\left(a+b\right)^2=5^2$$
$$=$$> $$a^2+b^2+2ab=25$$
$$=$$> $$a^2+b^2+2\left(7\right)=25$$
$$=$$> $$a^2+b^2=25-14$$
$$=$$> $$a^2+b^2=11$$..................(3)
$$\therefore\ $$ $$\left(a^3+b^3\right)\left(a+b\right)=\left(20\right)\left(5\right)$$
$$=$$> $$a^4+a^3b+b^3a+b^4=100$$
$$=$$> $$a^4+b^4+ab\left(a^2+b^2\right)=100$$
$$=$$> $$a^4+b^4+\left(7\right)\left(11\right)=100$$
$$=$$> $$a^4+b^4+77=100$$
$$=$$> $$a^4+b^4=100-77$$
$$=$$> $$a^4+b^4=23$$
Hence, the correct answer is Option B
Create a FREE account and get: