If $$(2x + 7)^3 + (2x + 8)^3 + (2x + 3)^3 = 3 (2x + 7) (2x + 8) (2x + 3)$$, then what is the value of $$x$$ ?
We knwo the identity
$$a^3 + b^3 + c^3 -3abc = (a+b+c)(a^2 + b^2 + c^2 -ab - bc- ca)$$
$$\Rightarrow a^3 + b^3 + c^3 = 3abc$$ only if $$(a+b+c)=0$$
So as in Given Question,
$$(2x + 7)^3 + (2x + 8)^3 + (2x + 3)^3 = 3 (2x + 7) (2x + 8) (2x + 3)$$ then
$$\therefore (2x + 7) + (2x + 8) + (2x + 3) = 0$$
$$\therefore 6x + 18 = 0$$
$$\therefore 6x = -18$$
$$\therefore x = \frac{-18}{6}$$
$$\therefore x = -3$$
Create a FREE account and get: