Points A, B and C are on circle with centre O such that $$\angle$$BOC = 84$$^\circ$$. If AC is produced to a point D such that $$\angle$$BDC = 40$$^\circ$$, then find the measure of $$\angle$$ABD (in degrees).
Angle subtended by chord BC at the centre is twice the angle subtended by chord BC on the point A of the circle.
$$\angle$$BOC = 2$$\angle$$BAC
84$$^\circ$$ =Â 2$$\angle$$BAC
$$\angle$$BAC = 42$$^\circ$$
From triangle BAD,
$$\angle$$BAD +Â $$\angle$$ABD +Â $$\angle$$BDA =Â 180$$^\circ$$
42$$^\circ$$ +Â $$\angle$$ABD +Â 40$$^\circ$$ =Â 180$$^\circ$$
$$\angle$$ABD =Â 98$$^\circ$$
Hence, the correct answer is Option A
Create a FREE account and get: