Question 67

In $$\triangle$$ABC, AD is a median and P is a point on AD such that AP : PD =3 : 4. Then ar($$\triangle$$APB) : ar($$\triangle$$ABC) is equal to:

Solution

Given that,

In $$\triangle ABC$$, AD is the median.

And P is a point on AD such that AP : PD =3 : 4

We know that If two triangle have the same height and the length of the base is different then ratio of their area will be equal to the ratio of the respective base.

In $$\triangle$$ABC,

$$ar(\triangle ABD )=ar(\triangle ADC )=\dfrac{ar( \triangle ABC)}{2}$$

So, As per the area division rule of a triangle,

$$\Rightarrow \dfrac{ar(\triangle APB)}{ar(\triangle BPD)}=\dfrac{3}{4}$$

So, $$\Rightarrow ar(\triangle APB)=\dfrac{3 \times ar(\triangle ABD)}{3+4}$$

$$\Rightarrow ar(\triangle ABD)=\dfrac{3 \times ar(\triangle ABD)}{7}$$

Hence,
$$\Rightarrow ar(\triangle APB)$$ : $$ar(\triangle ABC)$$=$$\dfrac{\dfrac{3 \times ar(\triangle ABD)}{7}}{2 \times ar(\triangle ABD )}$$

$$\Rightarrow ar(\triangle APB)$$ : $$ar(\triangle ABC)$$=$$\dfrac{3}{14}$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App