If $$\cos \theta = \frac{4}{5}, then \sin^2 \theta \cos \theta + \cos^2 \theta \sin \theta$$ is equal to:
Given that,
$$\cos \theta = \frac{4}{5}$$
So, $$\sin \theta=\sqrt{1-\cos^2 \theta}=\sqrt{1-(\dfrac{4}{5})^2}=\dfrac{3}{5}$$
Now, substituting the values in  $$\sin^2 \theta \cos \theta + \cos^2 \theta \sin \theta$$
$$\Rightarrow (\dfrac{3}{5})^2\times \dfrac{4}{5} +(\dfrac{4}{5})^2\times \dfrac{3}{5}$$
$$\Rightarrow \dfrac{36}{125}+\dfrac{48}{125}$$
$$\Rightarrow \dfrac{84}{125}$$
Create a FREE account and get: