If a + b + c = 7 and ab + bc + ca = -6, then the value of $$a^3 + b^3 + c^3 - 3abc$$ is:
We know that,
$$a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 +Â b^2 +Â c^2 - (ab + bc + ac))$$
a + b + c = 7
Squaring both sides,
$$(a + b + c)^2 = 49$$
$$a^2 + b^2 + c^2 + 2(ab + bc + ac) = 49$$
$$a^2 + b^2 + c^2 = 49 + 12 = 61$$
$$a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - (ab + bc + ac))$$
= 7(61 - (-6)) = 7 $$\times$$ 67 = 469Â
Create a FREE account and get: