If $$\sec \theta = 4x, and \tan \theta = \frac{4}{x}$$, (x ≠ 0) then the value of $$8\left(x^2 - \frac{1}{x^2}\right)$$ is:
As We know the trigonometry identity :
$$\sec ^2\theta - \tan^2\theta = 1$$
By putting value of $$\sec\theta$$ and $$\tan\theta$$, we get
$$\Rightarrow(4x)^2 - (\frac{4}{x})^2 = 1$$
$$\Rightarrow 16x^2 - \frac{16}{x^2} = 1$$
$$\Rightarrow 16(x^2 -\frac{1}{x^2}) = 1$$
$$\therefore 8(x^2 -\frac{1}{x^2}) = \frac{1}{2}$$
Create a FREE account and get: