If one side of a triangle is 7 with its perimeter equal to 18, and area equal to $$\sqrt{108}$$, then the other two sides are:
Given,
One side of the triangle (a) = 7
Let the other two sides of the triangle are b and c
Perimeter of the triangle = 18
$$=$$>Â a+b+c = 18
$$=$$>Â 7+b+c = 18
$$=$$>Â b+c = 11 .................(1)
Semi perimeter of the triangle (s) =Â $$\frac{18}{2}=9$$
Area of the triangle =Â $$\sqrt{108}$$
$$=$$> Â $$\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}=\sqrt{108}$$
$$=$$> Â $$\sqrt{9\left(9-7\right)\left(9-b\right)\left(9-c\right)}=\sqrt{108}$$
$$=$$> Â $$9\left(2\right)\left(9-b\right)\left(9-c\right)=108$$
$$=$$> Â $$\left(9-b\right)\left(9-c\right)=6$$
$$=$$> Â $$81-9c-9b+bc=6$$
$$=$$> Â $$81-9\left(b+c\right)+bc=6$$
$$=$$> Â $$81-9\left(11\right)+bc=6$$
$$=$$> Â $$81-99+bc=6$$
$$=$$> Â $$bc=6+99-81$$
$$=$$> Â $$bc=24$$
$$=$$> Â $$c=\frac{24}{b}$$
Substituting $$c=\frac{24}{b}$$ in equation (1)
$$b+\frac{24}{b}=11$$
$$=$$> Â $$b^2+24=11b$$
$$=$$> Â $$b^2-11b+24=0$$
$$=$$> Â $$b^2-8b-3b+24=0$$
$$=$$> Â $$b\left(b-8\right)-3\left(b-8\right)=0$$
$$=$$> Â $$\left(b-8\right)\left(b-3\right)=0$$
$$=$$>  $$b=8$$ or  $$b=3$$
when $$b=8$$, $$c=\frac{24}{8}=3$$
when $$b=3$$, $$c=\frac{24}{3}=8$$    Â
$$\therefore\ $$The other two sides of the triangle are 3 and 8
Hence, the correct answer is Option D
Create a FREE account and get: