Question 65

If $$9a^2 + 16b^2 + c^2 + 25 = 24 (a + b)$$, then the value of (3a + 4b + 5c) is:

Solution

$$9a^2 + 16b^2 + c^2 + 25 = 24 (a + b)$$

$$9a^2+16b^2+c^2+25-24a-24b=0$$

$$9a^2+16-24a+16b^2+9-24b+c^2=0$$

$$\left(3a-4\right)^2+\left(4b-3\right)^2+c^2=0$$

So, 3a = 4, 4b=3, c=0

(3a + 4b + 5c) = 4+3+0= 7.


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App