The simplified value of $$\frac{3\sqrt7}{\sqrt5+\sqrt2}-\frac{5\sqrt5}{\sqrt2+\sqrt7}+\frac{2\sqrt2}{\sqrt7+\sqrt5}$$ is
$$\ \frac{\ 3\sqrt{\ 7}}{\sqrt{\ 5}+\sqrt{\ 2}}-\ \frac{\ 5\sqrt{\ 5}}{\sqrt{\ 7}+\sqrt{\ 2}}+\ \frac{\ 2\sqrt{\ 2}}{\sqrt{\ 7}+\sqrt{\ 5}}$$
=$$\ \frac{\ 3\sqrt{\ 7}}{\sqrt{\ 5}+\sqrt{\ 2}}\times\ \ \frac{\ \sqrt{\ 5}-\sqrt{\ 2}}{\sqrt{\ 5}-\sqrt{\ 2}}-\ \frac{\ 5\sqrt{\ 5}}{\sqrt{\ 7}+\sqrt{\ 2}}\times\ \ \frac{\ \sqrt{\ 7}-\sqrt{\ 2}}{\sqrt{\ 7}-\sqrt{\ 2}}+\ \frac{\ 2\sqrt{\ 2}}{\sqrt{\ 7}+\sqrt{\ 5}}\times\ \ \frac{\ \sqrt{\ 7}-\sqrt{\ 5}}{\sqrt{\ 7}-\sqrt{\ 5}}$$
=$$\ \frac{\ 3\sqrt{\ 7}\left(\sqrt{\ 5}-\sqrt{\ 2}\right)}{3}-\ \frac{\ 5\sqrt{\ 5}\left(\sqrt{\ 7}-\sqrt{\ 2}\right)}{5}+\ \frac{\ 2\sqrt{\ 2}\left(\sqrt{\ 7}-\sqrt{\ 5}\right)}{2}$$
=$$\sqrt{\ 35}-\sqrt{\ 14}-\sqrt{\ 35}+\sqrt{\ 10}+\sqrt{\ 14}-\sqrt{\ 10}$$= 0
Create a FREE account and get: