Question 64

If x + y + z = 19, $$x^2 +y^2 + z^2 = 133$$ and $$xz = y^2$$, then the difference between z and x is:

Solution

x + y + z = 19

$$(x + y + z)^2 =  x^2 + y^2 +z^2 + 2(xy + yz +zx) $$

361 = 133 + 2(xy + yz +zx)

xy + yz +zx= 114

Substituting xz = y$$^2$$

xy+yz+y$$^2$$ = 114

y(x + y + z) =114

y=6

x+z=13

xz=$$y^2$$ = 36

x - z = $$\sqrt{ (x + z)^2 - 4xz}$$

       = $$\sqrt{ 169 - 144}$$

       =5

So , the answer would be Option a)5.

Video Solution

video

Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App