If x $$\times$$ y denotes H.C.F of x and y and x @ y denotes LCM of x and y, then the value of (72Â $$\times$$ 84) @ 144 is:
If x $$\times$$ y denotes H.C.F of x and y and x @ y denotes LCM of x and y, then the is:
value of (72 $$\times$$ 84) @ 144 = LCM of [HCF of (72  and 84)] and 144  Eq.(i)
HCF of (72 and 84)
72 = $$2\times2\times2\times3\times3$$Â
84 =Â $$2\times2\times3\times7$$
So here 2, 2 and 3 are common. HCF of (72 and 84) = $$2\times2\times3$$ = 12   Eq.(ii)
Put Eq.(ii) in Eq.(i).
=Â LCM of 12 and 144Â Â Eq.(iii)
LCM of (12 and 144)
LCM of (12 and 144) = $$2\times2\times2\times2\times3\times3$$
= 144
Create a FREE account and get: