If $$x - \frac{1}{x} = \sqrt{77}$$, then one of the values of $$x^3 + \frac{1}{x^3}$$ is:
$$x - \frac{1}{x} = \sqrt{77}$$
$$\left(x-\frac{1}{x}\right)^2=77$$
$$x^2+\frac{1}{x^2}-2=77$$
$$x^2+\frac{1}{x^2}=79$$
$$x^2+\frac{1}{x^2}+2=81$$
$$\left(x+\frac{1}{x}\right)^2=81$$
$$x+\frac{1}{x}=9$$ or $$x+\frac{1}{x}=-9$$
When $$x+\frac{1}{x}=-9$$
$$x^3+\frac{1}{x^3}+3.x.\frac{1}{x}\left(x+\frac{1}{x}\right)=-729$$
$$x^3+\frac{1}{x^3}+3\left(-9\right)=-729$$
$$x^3+\frac{1}{x^3}-27=-729$$
$$x^3+\frac{1}{x^3}=-702$$
Hence, the correct answer is Option B
Create a FREE account and get: