If $$tan \alpha=2$$, then the value of $$\frac{sin\alpha}{sin^3\alpha+cos^3\alpha}$$ is
Given : $$tan \alpha=2$$ ----------(i)
=> $$\frac{sin\alpha}{cos\alpha}=2$$
=> $$\frac{\sqrt{1-cos^2\alpha}}{cos\alpha}=2$$
=> $$\sqrt{1-cos^2\alpha}=2cos\alpha$$
Squaring both sides,
=> $$1-cos^2\alpha=4cos^2\alpha$$
=> $$4cos^2\alpha+1cos^2\alpha=1$$
=> $$cos^2\alpha=\frac{1}{5}$$ ----------(ii)
=> $$sin^2\alpha=1-\frac{1}{5}=\frac{4}{5}$$ ------------(iii)
To find : $$\frac{sin\alpha}{sin^3\alpha+cos^3\alpha}$$
Dividing both numerator and denominator by $$cos\alpha$$
= $$\frac{\frac{sin\alpha}{cos\alpha}}{\frac{sin^3\alpha}{cos\alpha}+\frac{cos^3\alpha}{cos\alpha}}$$
= $$\frac{tan\alpha}{tan\alpha .sin^2\alpha+cos^2\alpha}$$
Substituting values from equations (i),(ii) and (iii),
=Â $$\frac{2}{2\times\frac{4}{5}+\frac{1}{5}}$$
= $$\frac{2}{\frac{9}{5}}=\frac{10}{9}$$
=> Ans - (C)
Create a FREE account and get: