If $$\frac{\sec\theta+\tan\theta}{\sec\theta-\tan\theta}=5$$ and $$\theta$$ is an acute angle, then the value of $$\frac{3\cos^2\theta+1}{3\cos^2\theta-1}$$ is:
Given, Â $$\frac{\sec\theta+\tan\theta}{\sec\theta-\tan\theta}=5$$
$$\Rightarrow$$ Â $$\sec\theta+\tan\theta=5\sec\theta\ -5\tan\theta\ $$
$$\Rightarrow$$ Â $$6\tan\theta=4\sec\theta$$
$$\Rightarrow$$ Â $$6\frac{\sin\theta\ }{\cos\theta\ }=4\frac{1}{\cos\theta\ }$$
$$\Rightarrow$$ Â $$\sin\theta=\frac{2}{3}$$
$$\cos^2\theta\ =1-\sin^2\theta\ =1-\left(\frac{2}{3}\right)^2=\frac{5}{9}$$
$$\therefore\ $$ $$\frac{3\cos^2\theta+1}{3\cos^2\theta-1}=\frac{3\left(\frac{5}{9}\right)+1}{3\left(\frac{5}{9}\right)-1}$$
$$=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}$$
$$=\frac{8}{2}$$
$$=4$$
Hence, the correct answer is Option A
Create a FREE account and get: