If $$\cos (A + B) = 0$$ and $$\sin (A - B) = \frac{1}{2}$$ , then the value of B is:
(Given $$0^\circ < A, B < 90^\circ$$)
Given, $$0^\circ < A, B < 90^\circ$$
$$\cos (A + B) = 0$$
$$=$$> Â $$\cos(A+B)=\cos90^{\circ\ }$$
$$=$$> Â $$A+B=90^{\circ\ }$$ .....................(1)
$$\sin (A - B) = \frac{1}{2}$$
$$=$$> Â $$\sin(A-B)=\sin30^{\circ\ }$$
$$=$$> Â $$A-B=30^{\circ\ }$$ .....................(2)
Subtracting (2) from (1), we get
$$A+B-A+B=90^{\circ\ }-30^{\circ\ }$$
$$=$$> Â $$2B=60^{\circ\ }$$
$$=$$> Â $$B=30^{\circ\ }$$
Hence, the correct answer is Option D
Create a FREE account and get: