Question 64

If $$A = \left[\frac{3}{7} of 4\frac{1}{5} \div \frac{18}{25} + \frac{17}{24}\right]$$ of $$\left[\frac{289}{16} \div \left(\frac{3}{4} + \frac{2}{3}\right)^2\right]$$, then the value of 8A is:

Solution

$$A = \left[\frac{3}{7} of 4\frac{1}{5} \div \frac{18}{25} + \frac{17}{24}\right] of \left[\frac{289}{16} \div \left(\frac{3}{4} + \frac{2}{3}\right)^2\right]$$

$$=$$>  $$A=\left[\frac{3}{7}of\frac{21}{5}\div\frac{18}{25}+\frac{17}{24}\right]of \left[\frac{289}{16}\div\left(\frac{17}{12}\right)^2\right]\ $$

$$=$$>  $$A=\left[\frac{63}{35}\div\frac{18}{25}+\frac{17}{24}\right]of\left[\frac{289}{16}\div\frac{289}{144}\right]$$

$$=$$>  $$A=\left[\frac{63}{35}\times\frac{25}{18}+\frac{17}{24}\right]of\left[\frac{289}{16}\times\frac{144}{289}\right]$$

$$=$$>  $$A=\left[\frac{5}{2}+\frac{17}{24}\right]of  9$$

$$=$$>  $$A=\left[\frac{60+17}{24}\right]\times9$$

$$=$$>  $$A=\frac{77}{24}\times9$$

$$=$$>  $$A=\frac{231}{8}$$

$$=$$>  $$8A=231$$

Hence, the correct answer is Option C


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App