If $$A = \left[\frac{3}{7} of 4\frac{1}{5} \div \frac{18}{25} + \frac{17}{24}\right]$$ of $$\left[\frac{289}{16} \div \left(\frac{3}{4} + \frac{2}{3}\right)^2\right]$$, then the value of 8A is:
$$A = \left[\frac{3}{7} of 4\frac{1}{5} \div \frac{18}{25} + \frac{17}{24}\right] of \left[\frac{289}{16} \div \left(\frac{3}{4} + \frac{2}{3}\right)^2\right]$$
$$=$$> Â $$A=\left[\frac{3}{7}of\frac{21}{5}\div\frac{18}{25}+\frac{17}{24}\right]of \left[\frac{289}{16}\div\left(\frac{17}{12}\right)^2\right]\ $$
$$=$$> Â $$A=\left[\frac{63}{35}\div\frac{18}{25}+\frac{17}{24}\right]of\left[\frac{289}{16}\div\frac{289}{144}\right]$$
$$=$$> Â $$A=\left[\frac{63}{35}\times\frac{25}{18}+\frac{17}{24}\right]of\left[\frac{289}{16}\times\frac{144}{289}\right]$$
$$=$$>  $$A=\left[\frac{5}{2}+\frac{17}{24}\right]of 9$$
$$=$$> Â $$A=\left[\frac{60+17}{24}\right]\times9$$
$$=$$> Â $$A=\frac{77}{24}\times9$$
$$=$$> Â $$A=\frac{231}{8}$$
$$=$$> Â $$8A=231$$
Hence, the correct answer is Option C
Create a FREE account and get: