If a + b + c = 2, $$a^2 + b^2 + c^2 = 26$$, then the value of $$a^3 + b^3 + c^3 - 3 abc$$ is:
By using this formula we can solve
$$(a + b + c)^2$$ = $$a^2+b^2+c^2+2(ab+bc+ca)$$
by using given data we can write has
$$2^2$$=$$26$$+$$2(ab+bc+ca)$$
$$4-26÷2$$= $$(ab+bc+ca)$$
$$-22÷2$$ = $$(ab+bc+ca)$$
$$(ab+bc+ca)$$ = -11
$$a^3+b^3+c^3-3abc$$ =$$ (a+b+c)$$ $$(a^2+b^2+c^2-ab-bc-ca)$$
where $$(a+b+c)$$ = 2
$$a^2+b^2+c^2 $$= 26
and $$(ab+bc+ca)$$ = -11
Hence by applying to the formula
= $$2×(26-(-11)$$
= $$2×(26+11)$$
= $$2×(37)$$
= 74
Create a FREE account and get: